| OCZ Vertex 3 SandForce SF-2281 SSD | |
| Reviews - Featured Reviews: Storage | |
| Written by Olin Coles | |
| Monday, 04 April 2011 | |
|
Page 1 of 13
OCZ Vertex 3 SandForce SF-2281 SSD Review
Manufacturer: OCZ Technology Group, Inc. Full Disclosure: The product sample used in this article has been provided by OCZ. OCZ Technology first launched their Vertex SSD series shortly after the 2009 Consumer Electronics Show, and delivered impressive performance to performance hardware enthusiasts using the latest Indilinx Barefoot storage controller. Indilinx would go on to have a phenomenal year, and capture the consumer market with their Barefoot controller. But market dominance is a short-lived success, and at the 2010 CES there was a new player in the market: SandForce Inc. This new company promoted the SandForce SF-1200 SSD Processor, which operated faster and more efficiently than the competition, and would be the foundation for OCZ's Vertex 2 SSD. Like clockwork, OCZ debuted their next-generation enthusiast storage platform at the recent 2011 CES, and introduced the Vertex 3 SSD to the market a short while later. For many within the industry, SandForce was seen to control the 2010 market in much the same way that Indilinx did in 2009. The difference now is that SandForce's platform offers several technical benefits that the Indilinx platform was not capable of. Already into the Q2-2011, the landscape is approximately the same, but with some interesting new twists. OCZ Technology has recently acquired Indilinx, and while there's no word on any new project developments they've moved forward with the Vertex 3 SSD based on the second-generation SandForce's SF-2281 SATA 6Gb/s controller. OCZ promises 60,000 IOPS at up to 550 MB/s transfer speeds with the Vertex 3 SSD, and Benchmark Reviews confirms that they're keeping this promise with tests of the new storage device on a B3-stepping Sandy Bridge platform. The second-generation SF-2281 SSD processor maintains all of the original core technology SandForce originally introduced in the SF-1200 series, but now improves SSD performance with 20% faster IOPS and 40% faster sequential read/write throughput. They've enhanced BCH ECC capability, and the new processor now supports ATA-7 Security Erase. Finally, the new SF-2200 series implements cost-effective 20nm-class NAND flash from all leading flash vendors with Asynch/ONFi1/ONFi2/Toggle interfaces.
Even after decades of design improvements, the hard disk drive (HDD) is still the slowest component in any personal computer system. Consider that modern desktop processors have a 1 ns response time (nanosecond = one billionth of one second), while system memory responds between 30-90 ns. Traditional hard drive technology utilizes magnetic spinning media, and even the fastest spinning mechanical storage products still exhibit a 9,000,000 ns / 9 ms initial response time (millisecond = one thousandth of one second). In more relevant terms, the processor receives the command and must then wait for system memory to fetch related data from the storage drive. This is why any computer system is only as fast as the slowest component in the data chain; usually the hard drive. In a perfect world all of the components operate at the same speed. Until that day comes, the real-world goal for achieving optimal performance is for system memory to operate as quickly as the central processor and then for the storage drive to operate as fast as memory. With present-day technology this is an impossible task, so enthusiasts try to close the speed gaps between components as much as possible. Although system memory is up to 90x (9000%) slower than most processors, consider then that the hard drive is an added 1000x (100,000%) slower than that same memory. Essentially, these three components are as different in speed as walking is to driving and flying. Solid State Drive technology bridges the largest gap in these response times. The difference a SSD makes to operational response times and program speeds is dramatic, and takes the storage drive from a slow 'walking' speed to a much faster 'driving' speed. Solid State Drive technology improves initial response times by more than 450x (45,000%) for applications and Operating System software, when compared to their mechanical HDD counterparts. The biggest mistake PC hardware enthusiasts make with regard to SSD technology is grading them based on bandwidth speed. File transfer speeds are important, but only so long as the operational IOPS performance can sustain that bandwidth under load. Bandwidth Speed vs Operational PerformanceAs we've explained in our SSD Benchmark Tests: SATA IDE vs AHCI Mode guide, Solid State Drive performance revolves around two dynamics: bandwidth speed (MB/s) and operational performance (IOPS). These two metrics work together, but one is more important than the other. Consider this analogy: bandwidth determines how much cargo a ship can transport in one voyage, and operational IOPS performance is how fast the ship moves. By understanding this and applying it to SSD storage, there is a clear importance set on each variable depending on the task at hand. For casual users, especially those with laptop or desktop computers that have been upgraded to use an SSD, the naturally quick response time is enough to automatically improve the user experience. Bandwidth speed is important, but only to the extent that operational performance meets the minimum needs of the system. If an SSD has a very high bandwidth speed but a low operational performance, it will take longer to load applications and boot the computer into Windows than if the SSD offered a higher IOPS performance.
|
|





Comments
Pretty good statement. If i was in their ads department i would take this line and add it somewhere in the product page.
As always Olin, excellent review. with each review you provide all the important information needed to understand how these drives work.
I think is probably time to treat myself with an SSD.
Ive been waiting for these prices to come down a bit. But dam, they are persistent. gonna have to call the EU Trade commission to look up into the scheme.
I think there has to be some type of SSD price fixing going on with these companies just like we saw with the LCDs.
"LG Display, Sharp, and Chunghwa Picture Tubes agreed to plead guilty to criminal charges for participating in a liquid crystal display price-fixing conspiracy and pay $585 million in fines, the U.S. Department of Justice announced Wednesday.
Read more: #news.cnet.com/8301-1001_3-10095219-92.html#ixzz1IfIgIv49
"
Anyway something people need to be aware of is the bigger drives 240GB+ perform very different to 120GB and smaller vertex 3's.
Dont expect to get this performance with a 120GB vertex 3 or 60GB vertex 3. They get much slower with smaller capacity.
That's fine. I found just this sort of benchmark on another site and the results are encouraging. The site shows a number of SATA drives benchmarked both on III and on II.
thanks