Archive Home arrow Reviews: arrow Power arrow Ultra X-Pro 800W Aluminum PSU ULT33185
Ultra X-Pro 800W Aluminum PSU ULT33185 E-mail
Reviews - Featured Reviews: Power
Written by Olin Coles   
Tuesday, 28 August 2007
Table of Contents: Page Index
Ultra X-Pro 800W Aluminum PSU ULT33185
Closer Look: Exterior Design
Closer Look: Cables and Wiring
Testing Voltage Ripple and Regulation
Final Thoughts and Conclusion

Load Testing

Power supplies are not like most other computer components, where it is a simple matter of comparing the item to others in the same category. Power supplies are comprised of several different variables, such as maximum output, voltage regulation, and current ripple. Each of these variables must be analyzed with unique tools, which makes it a difficult product to properly review.

I am well aware of what the more knowledgeable readers think about these power supply reviews: impractical and often useless. That's about to change. In the past, Benchmark Reviews has been guilty of the same thing nearly all of the other sites are guilty of: testing with a digital multimeter alone. So beginning now with this review, we are taking a corrected approach to testing PSU's and hope to offer the best analysis possible.

Benchmark Reviews has researched the equipment necessary to complete the most thorough power supply unit review possible. We spent the time learning what it takes because the best possible PSU tests are what we want to give to our readers. But after discovering the prices on a programmable output DC power supply system, variable range load testing units, and a DC power analyzer (Oscilloscope), we felt that more than ten-thousand dollars worth of equipment would be far too cost prohibitive for testing a hundred-dollar power supply. So without compromising too much, we made a slightly less-expensive investment into a good quality Oscilloscope in order to test DC voltage regulation and AC power ripple. Together, the Oscilloscope and digital multimeter will offer readers the best measurement of power stability any review site could reasonably offer.

Test System

Ultra X-Pro 800W Aluminum PSU ULT33185

Test Equipment

  • Velleman PCSU-1000 Oscilloscope
    • DC Voltage Regulation Settings: 2V DC Volt/Division, 60MHz 1x, 1ms
    • AC Power Ripple Settings: 50mV Volt/Division, 60MHz 1x, 1ms
  • PC-Lab2000SE v3.03 Interface Software
  • Extech 450 Auto ranging Digital Multimeter

Test Methodology

Our testing process is comprised of measuring the AC current ripple, and the DC voltage regulation. There are several key steps, all of which allow us to measure and record our readings using the identical methods for every test we perform. Consistent testing methods are key to obtaining comparable results.

At the start of every test, the Velleman PCSU-1000 Oscilloscope is calibrated to the PC-Lab2000SE software. After calibration is complete, the voltage on the 12V rails are measured and recorded with the Extech 450 digital multimeter to ensure comparable margin across all rails. Once the Velleman 60MHz probe has been grounded and attached to the 12V lead, our test system is powered on and left at the Windows logon screen for ten minutes.

Once this lightly-loaded idle warm up period is complete, the Velleman PCSU-1000 Oscilloscope was allowed to run for one minute measuring the AC power ripple. Then once ripple is recorded, the 12V DC voltage regulation is recorded after another minute.

After the results have been recorded from the light idle load, our test system then receives heavy load by utilizing the following tools: two console versions of the http://folding.stanford.edu/client operate and task each CPU core to 100%, hard disks are stressed by benchmarking each with HD Tach RW, system memory (RAM) is given a stress test with Lavalys EVEREST, and ATITool scans for artifacts which forced the video card into high-power 3D mode. After ten minutes of heavy load the power supply is again measured, and the AC power ripple and 12V DC voltage regulation results are recorded.

Voltage Regulation & Ripple Test Results

In the test results below, it will be necessary to explain what you are viewing. In each image the AC power ripple is represented by the yellow trace line making up the waveform. While every personal computer power supply unit available to the retail market has some degree of measurable AC power ripple, it is most important that measurable AC ripple is very minor and does not create a large peak to peak voltage (Vpp) distortion. Stable, well-regulated power is critical to system stability and hardware longevity.

AC Ripple Waveform at Light Idle Load

AC Ripple waveform at light idle load

The waveform image above shows the AC power ripple under light idle load, which is measured inside of a 1ms recording frame. Waveform data recorded during the light idle load measurement is represented in the chart below:

AC Ripple Waveform Data at Light Idle Load

AC Ripple waveform data chart at light idle load

The waveform data above describes the actual measurements at light idle load. The maximum peak-to-peak AC voltage distortion was 321.9 mV, and the AC RMS ripple was 16.1 mV under light idle load. Note that the AC Vpp is average, while the AC RMS ripple was slightly better than the average results we have collected under light idle load.

Here are the average AC RMS ripple measurements under light idle load for power supplies we have recently tested:

AC Power Ripple at Idle Load

The waveform image below shows the AC power ripple under heavy load. The maximum peak-to-peak AC voltage distortion was 370.3 mV, and the AC RMS ripple was 23.9 mV under heavy load. Note that these results are among the best results we have collected under heavy load.

AC Ripple Waveform at Heavy Load

AC Ripple waveform at heavy load

Under heavy load, the Ultra X-Pro 800W Aluminum PSU ULT33185 measured an average AC RMS ripple just barely higher than the ripple at light idle load, measuring 22.21 mV which is extremely good. The waveform data recorded during the heavy load measurement is represented in the chart below:

AC Ripple Waveform Data at Heavy Load

AC Ripple waveform data chart at heavy load

Because the X-Pro 800W PSU offered above-average results in the idle readings, I didn't really expect them to get any better; but this PSU recorded excellent results into the heavy load tests. Here are the average AC RMS ripple measurements under heavy load for other power supplies we have recently tested:

AC Power Ripple at Heavy Load

The power dropped down to no less than 11.88 V, which means that even under heavy load there is very little chance that system stability will be affected. Under light idle load conditions the DC regulation averaged 0.31 Vpp, and deviated just slightly more under heavy load to a measured 0.38 Vpp; these results are better than average. The DC regulation data recorded at light and heavy load is displayed in the chart below:

DC Voltage Regulation Waveform Data at Light Idle and Heavy Load

DC Voltage Regulation at Light Idle Load DC Voltage Regulation at Heavy Load

Many of the power supplies we test here at Benchmark Reviews have DC voltage regulation measuring above the 12V baseline more often than below. For obvious reasons, the diversion from the 12V baseline with increased voltage is more preferred than below it since dropping too far under 12V will cause a system to power off or recycle. Plainly put, no power supply is ever perfectly centered at 12V DC; instead they most often maintain a DC mean voltage higher than they are regulated at.



 

Comments have been disabled by the administrator.

Search Benchmark Reviews
QNAP Network Storage Servers

Follow Benchmark Reviews on FacebookReceive Tweets from Benchmark Reviews on Twitter