Archive Home arrow Reviews: arrow Motherboards arrow ASUS P8P67 LGA1155 Motherboard








ASUS P8P67 LGA1155 Motherboard E-mail
Reviews - Featured Reviews: Motherboards
Written by Olin Coles and David Ramsey   
Monday, 03 January 2011
Table of Contents: Page Index
ASUS P8P67 LGA1155 Motherboard
The Intel P67 Express Chipset
Closer Look: ASUS P8P67
ASUS P8P67 Details
ASUS UEFI (BIOS)
ASUS P8P67 Overclocking
ASUS P8P67 1.0 Specifications
Motherboard Testing Methodology
AIDA64 Extreme Edition Tests
PCMark Vantage Tests
CINEBENCH R11.5 Benchmarks
CPU-Dependent 3D Gaming
PassMark PerformanceTest
Media Encoding Benchmarks
SPECviewperf 11 Tests
SPECapc Lightwave
ASUS P8P67 Conclusion

PCMark Vantage Tests

PCMark Vantage is an objective hardware performance benchmark tool for PCs running 32- and 64-bit versions of Microsoft Windows Vista or Windows 7. It's well suited for benchmarking any type of Microsoft Windows Vista/7 PC: from multimedia home entertainment systems and laptops, to dedicated workstations and high-end gaming rigs. Benchmark Reviews has decided to use a few select tests from the suite to simulate real-world processor usage in this article. Our tests were conducted on 64-bit Windows 7, with results displayed in the chart below.

TV and Movies Suite

  • TV and Movies 1 (CPU=50%, RAM=2%, GPU=45%, HDD=3%)
    • Two simultaneous threads
    • Video transcoding: HD DVD to media server archive
    • Video playback: HD DVD w/ additional lower bitrate HD content from HDD, as downloaded from net
  • TV and Movies 2 (CPU=50%, RAM=2%, GPU=45%, HDD=3%)
    • Two simultaneous threads
    • Video transcoding: HD DVD to media server archive
    • Video playback, HD MPEG-2: 19.39 Mbps terrestrial HDTV playback
  • TV and Movies 3 (HDD=100%)
    • HDD Media Center
  • TV and Movies 4 (CPU=50%, RAM=2%, GPU=45%, HDD=3%)
    • Video transcoding: media server archive to portable device
    • Video playback, HD MPEG-2: 48 Mbps Blu-ray playback

Gaming Suite*

  • Gaming 1 (CPU=30%, GPU=70%)
    • GPU game test
  • Gaming 2 (HDD=100%)
    • HDD: game HDD
  • Gaming 3 (CPU=75%, RAM=5%, HDD=20%)
    • Two simultaneous threads
    • CPU game test
    • Data decompression: level loading
  • Gaming 4 (CPU=42%, RAM=1%, GPU=24%, HDD=33%)
    • Three simultaneous threads
    • GPU game test
    • CPU game test
    • HDD: game HDD

Music Suite

  • Music 1 (CPU=50%, RAM=3%, GPU=13%, HDD=34%)
    • Three simultaneous threads
    • Web page rendering - w/music shop content
    • Audio transcoding: WAV -> WMA lossless
    • HDD: Adding music to Windows Media Player
  • Music 2 (CPU=100%)
    • Audio transcoding: WAV -> WMA lossless
  • Music 3 (CPU=100%)
    • Audio transcoding: MP3 -> WMA
  • Music 4 (CPU=50%, HDD=50%)
    • Two simultaneous threads
    • Audio transcoding: WMA -> WMA
    • HDD: Adding music to Windows Media Player

* EDITOR'S NOTE: Hopefully our readers will carefully consider how relevant PCMark Vantage is as a "real-world" benchmark, since many of the tests rely on unrelated hardware components. For example, per the FutureMark PCMark Vantage White Paper document, Gaming test #2 weighs the storage device for 100% of the test score. In fact, according to PCMark Vantage the video card only impacts 23% of the total gaming score, but the CPU represents 37% of the final score. As our tests in this article (and many others) have already proven, gaming performance has a lot more to do with the GPU than the CPU, and especially more than the hard drive or SSD (which is worth 38% of the final gaming performance score).

PCMark Vantage.png

The TV and Movies suite concentrates on video playback and transcoding, but only uses two threads at a maximum, so the Intel processor's Hyper-Threading and AMD 1100T's six cores shouldn't be an advantage. Still, the Intel processors are all faster than the 1100T, and the results seem to scale almost directly with clock speed, with the Sandy Bridge architecture seeming to provide little advantage.

The Gaming benchmark relies on the hard disk and video card for over 50% of its score (see the Editor's Note above), and we're using the same HDD and video card for all platforms, so the Intel processor's decisive win in this test simply means that Vantage's gaming code is more optimized for Intel processors. Bear in mind, however, that most "real world" games will not show this difference; generally, in games, your video card matters most, followed by the clock speed (not number of cores) of your processor. The PCMark Vantage gaming test can use up to 16 threads, so Hyper-Threading gives the Intel CPUs a real advantage, but very few commercial games will take full advantage of multicore processors.

Unlike the Gaming test, the Music test results have more real-world relevance, since multi-threading is much more common in music transcoding applications than it is in games. What's strange here is the exceptional performance of the Nehalem-based Core i7-950 proc, which beats the 2600K's stock results and comes close to its overclocked results. This is something you should be aware of: when Intel (or AMD) change a processor's instructions or architecture, it's not a given that existing code will take full, or any, advantage of it. This is the only benchmark I ran in which the Intel DP67BG motherboard with the stock-clocked 2500K CPU performed noticeably worse than the ASUS boards at stock clock speeds.

Futuremark's weighing of the various system components in each test is the subject of some debate; and some of their choices (such as the Gaming test's use of a 1024x768 resolution with no anti-aliasing or texture filtering being "representative" of the "consumer experience") seem odd to me, but the TV and Movies and Music benchmarks are arguably reasonable predictors of overall system performance.



 

Comments have been disabled by the administrator.

Search Benchmark Reviews

Like Benchmark Reviews on FacebookFollow Benchmark Reviews on Twitter