Archive Home arrow Reviews: arrow Storage arrow Corsair P64 CMFSSD-64GBG2D RAID-0 Set
Corsair P64 CMFSSD-64GBG2D RAID-0 Set E-mail
Reviews - Featured Reviews: Storage
Written by Olin Coles   
Friday, 25 September 2009
Table of Contents: Page Index
Corsair P64 CMFSSD-64GBG2D RAID-0 Set
Features and Specifications
First Look: CMFSSD-64GBG2D
Samsung G2 SSD Components
SSD Testing Methodology
Random Access Time Benchmark
Basic IO Bandwidth
Random Access IOPS Tests
I/O Response Time
Linear Bandwidth Speed
Sequential Performance Tests
Buffered Transaction Speed
Solid State Drive Final Thoughts
Corsair P64-RAID-PK1 Conclusion

SSD vs Hard Disk Drive

The last days of old technology are always better than the first days of new technology. Never has this saying been more true than with the topic of storage technology, specifically in regard to the introduction of Solid State Drive technology a few years ago. The only things standing in the way of widespread Solid State Drive (SSD) adoption are high storage capacity and affordable price of Hard Disk Drive (HDD) devices. Because NAND flash-based SSD technology costs more per gigabyte of capacity than traditional magnetic hard drives, the benefits of immediate response time, transfer speeds, and operational input/output performance often get overlooked. Like most consumer products, it wasn't a question of how much improvement was evident in the new technology, it was price. I'll discuss product costs more in just a moment, but for now consider how each new series of SSD product employs greater performance than the one before it, convincing would-be consumers into waiting for the right time to buy.

There's also a gray area surrounding SSD performance benchmarks that has me concerned. You might not know this, but SSDs can be very temperamental towards the condition of their flash NAND. My experience testing dozens of Solid State Drives is that a freshly cleaned device (using an alignment tool) will always outperform the same device once it's been formatted and used. A perfect example is Indilinx Barefoot-based SSDs, which suffers severely degraded performance when writing to 'dirty' flash NAND. The reason that all of this will matters is simple: the performance results reported to consumers in product reviews (such as this one) often report the very best performance scores, and the process used to obtain these results is not applicable to real-world usage. This is where garbage collection techniques such as TRIM become important, so that end-users will experience the same performance levels as we do in our tests.

Manufacturer Indilinx Intel JMicron Samsung Toshiba SandForce Marvell
Controller IDX110M00-FC PC29AS21AA0 JMF612 S3C29RBB01-YK40 T6UG1XBG SandForce SF-1200 88SS9174-BJP2
Max Cache 64MB 16MB 128KB+256MB 128MB 128MB Integrated 128MB
Max Capacity 256GB 160GB 256GB 256GB 512GB 512GB 256GB
Read/Write Speed 230/170 MBps 250/70 MBps 250/200 MBps 220/200 MBps 230/180 MBps 260/260 MBps 355/215 MBps
Interface SATA-II 3-Gbps SATA-II 3-Gbps SATA-II 3-Gbps SATA-II 3-Gbps SATA-II 3-Gbps SATA-II 3-Gbps SATA-III 6-Gbps
Garbage Collection GC/TRIM None TRIM GC/TRIM GC/TRIM GC/TRIM GC/TRIM

Chart By:

BmR

Garbage Collection (GC) is the current solution for keeping flash NAND in 'clean' condition, while maintaining optimal performance. Windows 7 offers native TRIM support, and most retail SSDs also include this special GC function or at least offer a firmware update that brings the drive up-to-date. For anyone using an Operating System or SSD that does not offer Garbage Collection functionality, you'll be using 'dirty' flash NAND modules and suffering sub-optimal performance for each write-to request. A few SSD manufacturers offers free tools to help restore peak-level performance by scheduling GC to 'clean' used NAND sectors, but these tools add excessive wear to the NAND the same way disk defragmenting tools would. SLC flash modules may resist wear much better than MLC counterparts, but come at the expense of increased production cost. The best solution is a more durable NAND module that offers long-lasting SLC benefits at the cost of MLC construction. Adoption is further stalled because keen consumers aware of this dilemma further continue their delay into the SSD market.

Getting back to price, the changes in cost per gigabyte have come as often as changes to the technology itself. At their inception, high-performance models such the 32GB MemoRight GT cost $33 per gigabyte while the entry-level 32GB Mtron MOBI 3000 sold for $14 per gigabyte. While an enjoyable decline in NAND component costs forced consumer SSD prices down low in 2009, the price of SSD products has been on the rise during 2010. Nevertheless, Solid State Drives continue to fill store shelves despite price or capacity, and there are a few SSD products now costing only $2.03 per gigabyte. Although the performance may justify the price, which is getting dangerously close to the $1.00 per gigabyte WD VelociRaptor hard drive, costs may still close some buyers out of the market. Price notwithstanding, the future is in SSD technology and the day when HDDs are obsolete is nearing; but there are still a few bumps in the road to navigate.



 

Comments have been disabled by the administrator.

Search Benchmark Reviews
QNAP Network Storage Servers

Follow Benchmark Reviews on FacebookReceive Tweets from Benchmark Reviews on Twitter