Archive Home arrow Reviews: arrow Storage arrow OCZ Vector Solid State Drive

OCZ Vector Solid State Drive E-mail
Reviews - Featured Reviews: Storage
Written by Olin Coles   
Wednesday, 09 January 2013
Table of Contents: Page Index
OCZ Vector Solid State Drive
Closer Look: OCZ Vector SSD
Features and Specifications
SSD Testing Methodology
AS-SSD Benchmark
ATTO Disk Benchmark
CrystalDiskMark 3.0 Tests
Iometer IOPS Performance
EVEREST Disk Benchmark
PCMark Vantage HDD Tests
OCZ Vector SSD Conclusion

OCZ Vector Solid State Drive Review

Manufacturer: OCZ Technology Group, Inc.
Product Name: Vector 2.5" Solid State Drive
Model Number: VTR1-25SAT3-256G (256GB Capacity)
UPC: 842024032342
Prices: 128GB for $159.99 (Newegg/Amazon), 256GB for $269.99 (Newegg/Amazon), 512GB for $569.99 (Newegg/Amazon)

Full Disclosure: The product sample used in this article has been provided by OCZ.

The OCZ Vector 2.5" solid state drive (VTR1-25SAT3 series) is an ultra-slim 7mm high-performance SSD storage device produced in-house by OCZ Technology with a focus on reliability. Featuring OCZ's new Indilinx Barefoot 3 storage controller, the Vector SSD series is built to produce optimized performance for enthusiasts wanting to capitalize on near-instant response times. OCZ Vector SSDs are available in 128/256/512GB capacities, and deliver up to 550MB/s read speeds with up to 95,000 Random Read IOPS. In this article Benchmark Reviews puts these specifications to test, and compares the OCZ Vector solid state drive against the leading competition.

Back in July 2011, OCZ Technology announced their Indilinx "Everest" SATA controller platform, which featured a 275 MHz dual-core Marvell-based CPU with 128KB on-chip SRAM for programs and another 64KB for data. The first product to utilize the new Everest platform was the OCZ Octane SSD, which debuted early in 2012 with a 512MB DRAM cache buffer operating at 400 MHz and custom Indilinx-programmed firmware. The second generation Everest 2 platform again featured a Marvell-based dual-ARM controller, which optimized reduced-write amplifications without data compression to yield better I/O and help extend the product warranty to an industry leading five years. The Indilinx Barefoot 3 SATA controller is an all-original design, yet still delivers these combined features into the Vector SSD.


Solid State vs Hard Disk

Despite decades of design improvements, the hard disk drive (HDD) is still the slowest component of any personal computer system. Consider that modern desktop processors have a 1 ns response time (nanosecond = one billionth of one second), while system memory responds between 30-90 ns. Traditional hard drive technology utilizes magnetic spinning media, and even the fastest spinning mechanical storage products still exhibit a 9,000,000 ns / 9 ms initial response time (millisecond = one thousandth of one second). In more relevant terms, the processor receives the command and must then wait for system memory to fetch related data from the storage drive. This is why any computer system is only as fast as the slowest component in the data chain; usually the hard drive.

In a perfect world all of the components operate at the same speed. Until that day comes, the real-world goal for achieving optimal performance is for system memory to operate as quickly as the central processor and then for the storage drive to operate as fast as memory. With present-day technology this is an impossible task, so enthusiasts try to close the speed gaps between components as much as possible. Although system memory is up to 90x (9000%) slower than most processors, consider then that the hard drive is an added 1000x (100,000%) slower than that same memory. Essentially, these three components are as different in speed as walking is to driving and flying.

Solid State Drive technology bridges the largest gap in these response times. The difference a SSD makes to operational response times and program speeds is dramatic, and takes the storage drive from a slow 'walking' speed to a much faster 'driving' speed. Solid State Drive technology improves initial response times by more than 450x (45,000%) for applications and Operating System software, when compared to their mechanical HDD counterparts. The biggest mistake PC hardware enthusiasts make with regard to SSD technology is grading them based on bandwidth speed. File transfer speeds are important, but only so long as the operational I/O performance can sustain that bandwidth under load.

Bandwidth Speed vs Operational Performance

As we've explained in our SSD Benchmark Tests: SATA IDE vs AHCI Mode guide, Solid State Drive performance revolves around two dynamics: bandwidth speed (MB/s) and operational performance I/O per second (IOPS). These two metrics work together, but one is more important than the other. Consider this analogy: bandwidth determines how much cargo a ship can transport in one voyage, and operational IOPS performance is how fast the ship moves. By understanding this and applying it to SSD storage, there is a clear importance set on each variable depending on the task at hand.

For casual users, especially those with laptop or desktop computers that have been upgraded to use an SSD, the naturally quick response time is enough to automatically improve the user experience. Bandwidth speed is important, but only to the extent that operational performance meets the minimum needs of the system. If an SSD has a very high bandwidth speed but a low operational performance, it will take longer to load applications and boot the computer into Windows than if the SSD offered a higher IOPS performance.



# RE: OCZ Vector Solid State DriveArgos 2013-02-27 00:08
I know many pc enthusiasts are incredibly enamored with SSD's, and my current systems features one too as a systemdisk, but I have decided my next system will be built without SSD.

I think its not worth it. SSD are much to expensive and in common day to day circumstances you will hardly notice the speed gain. When I use my system that has no SSD I never get the feeling that it is actually slower than my SSD system. I suppose there must be an absolute difference, but the human perception does not deal in absolutes and thus I feel the large amount of money you spent on SSD is wasted in real life computer use. So personally I'd rather spent the money on something I will actually notice.

For the time being no more SSD for me. I consider them a waste of money.
Report Comment

Comments have been disabled by the administrator.

Search Benchmark Reviews

Like Benchmark Reviews on FacebookFollow Benchmark Reviews on Twitter